A Liver-Centric Multiscale Modeling Framework for Xenobiotics

نویسندگان

  • James P Sluka
  • Xiao Fu
  • Maciej Swat
  • Julio M Belmonte
  • Alin Cosmanescu
  • Sherry G Clendenon
  • John F Wambaugh
  • James A Glazier
چکیده

We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK) modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML) to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete

This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...

متن کامل

An ontological conceptualization of multiscale models

Multiscale modeling has recently been widely used in various fields of science and engineering. A few research efforts have attempted to generalize existing applications mainly by means of classifying multiscale modeling paradigms, to reach a general understanding of multiscale modeling. However, these existing efforts have been largely inductive and abstracting from the applications the resear...

متن کامل

Improved, feature-centric EMD for 3D surface modeling and processing

Since late 1990s, Empirical Mode Decomposition (EMD) starts to emerge as a powerful tool for processing non-linear and non-stationary signals. Nonetheless, the research on exploring EMD-relevant techniques in the domain of geometric modeling and processing is extremely rare. Directly applying EMD to coordinate functions of 3D shape geometry will not take advantage of the attractive EMD properti...

متن کامل

A Framework for Adaptive Multiscale Methods for Elliptic Problems

We describe a projection framework for developing adaptive multiscale methods for computing approximate solutions to elliptic boundary value problems. The framework is consistent with homogenization when there is scale separation. We introduce an adaptive form of the finite element algorithms for solving problems with no clear scale separation. We present numerical simulations demonstrating the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016